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Abstract 
Suppose you have just acquired a number of articles into a personal digital library.  The 
classification procedures described here would allow those articles to be automatically 
sorted in your pre-existing desktop folders.  We use the Chi-square statistic to find 
keywords that we use to classify the articles, and the Support Vector Classifier to 
organize the articles in folders.  Moreover we have adapted the process so that minimal 
feedback from users should improve classification results, and folders do not contain 
overly many articles for information management convenience.  We achieved an average 
of 96% accuracy over 10 trials with the Reuters 21578 news data, and 89% accuracy over 
10 trials with biomedical literature downloaded from the PubMed digital library.  We 
conclude that in a personal desktop environment, whether general or highly specific, our 
classification methods for automatic filing into the user’s own familiar folders would 
achieve high accuracy.   
  
Keywords: classification, personal digital document management, personal information 
management, document organization, digital library, SVM, Chi square, text 
categorization 
 
I.  Introduction 
 
A study on information preferences found that users like to search for a document by 
location, that is, the location on their own computer, so that they do not need to 
remember the file name (Barreau and Nardi, 1995).   Our procedures would allow users 
to keep their familiar categories and acquire documents en masse, to be filed 
automatically.  Automatically filing stands to be become even more useful in the near 
future as consumers might be acquiring music, articles, photos, and video on a single 
device (ICT, 2010).   
 
The challenge of automatic filing was presented to us by the director of the personal 
information management software, Mendeley. 1   He told us that his users requested 
automatic filing such as is found in the MacIntosh Smart Folder or the iTunes Smart 
Playlist.  We know that users tend to assign filing categories that mix genre, category, 
task and time (Henderson, 2005), and that retrieval by date or media is straightforward. 
As a research project, we focus on automatic filing by subject.  We use Mendeley as an 
environment for a user scenario.  
 
Mendeley software stores articles and provides its own categories for organization.  Over 
120,000 downloads of the software were counted as of January 2010, and there are 
almost 100,000 registered users.  Our procedure will allow users to file unseen 
documents automatically into user-defined categories.  The same procedure could be used 

                                                 
1  Dr. Jason Hoyt, Director of the Academic Reference Management software Mendeley, 
at http://www.mendeley.com/ 
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to organize an entire collection of articles into Mendeley category for storing on the back 
end on the company’s server.2   
 
Consider this use case to demonstrate how our auto-file system would work.  A 
Mendeley customer stores his articles in category folders for Artificial Intelligence, 
Biochemistry, Bioinformatics, Experimental psychology, Genetics, Molecular biology 
and Neurobiology.  A screen shot of the software desktop, left-hand column, shows these 
labelled folders (Figure 1).  The customer, a scientist, has just downloaded a set of 
articles sent by one of his colleagues.  These articles are as yet unsorted, and most are 
unread, as indicated by the un-bold dot preceding the article title (see right pane of screen 
in Figure 1).  The addition of our classification procedures would tuck the new articles 
into the existing folder categories.  Each article is assigned one category only.  
 
The articles in the user’s folders are used as training data.   The more articles the user has 
in a folder, the more likely that new articles will be classified correctly.    Our procedure 
uses data mining to find keywords, statistics to prioritize key words, and machine 
learning to acquire the algorithm that will predict in which categories unseen articles 
should be filed.   

 
Figure 1: Personal file folders within Mendeley 

 
 
Our research centers on automatic filing of unseen documents into user-defined 
categories (in the present context, folders), what can be done to minimize automatic filing 
errors, and how to keep the folders of manageable size.   

                                                 
2  Mendeley top level categories correspond to research disciplines, and each is in turn 
subdivided for finer organization.  See http://www.mendeley.com/research-papers/ 
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Questions guiding our work are:  
* How can we organize newly-acquired documents automatically into subject 
categories (of a user’s existing folders)?  
* What can we do to minimize filing error?    
* What options should we present to the user to improve results? 
* How can we keep folder sizes convenient for information management?  

 
The paper continues with a discussion of related work.  Then system architecture is 
diagrammed and each of the components is explained.  We describe our experiments on 
two data sets, a data set from Reuters designated as a test collection for text classification 
research, and a collection of title-abstract excerpts from the biomedical digital library 
PubMed for a user scenario.  We rely upon manual classifications from both data sets as 
the benchmark for our automatic categories.   We discuss strengths and weakness of our 
system, what can be improved, and future directions for research.  Conclusions highlight 
the significance of our automatic classification and how it will be possible for others to 
build upon our research.  
 
 
II.  Related work  
 
We are attempting to sort articles into pre-existing categories within a personal 
information management environment.  An early prototype of such an environment was 
the TEXPROS system of Fan, Liu, and Ng (1999).   It extracts an abstract for each 
document, whether or not the document has its own abstract, and then it organizes these 
abstracts in folders according to predefined user criteria such as sender, receiver, subject, 
date, journal or author.   Our research focuses on the most complicated of these filing 
problems: filing according to subject.  
 
 
We use classification for document organization because it allows the user’s familiar 
category labels to be retained, and because it is more likely to result in coherent 
groupings with fewer items that do not belong in the group.  Automatic classification 
systems for specific domains have used ontologies to improve indexing (Morais and 
Ambrósio, 2008).  When the document is general or unknown, approaches which use 
general purpose ontologies such as those created from the online encyclopedia, 
Wikipedia, might improve classification results to some extent (Syed, Finin and Joshi, 
2008).  Classification improvements due to adding ontologies, however, probably will be 
relatively minor (Wang and Domeniconi, 2008). 
 
The procedure begins by transforming words to numbers.   We reduce each document to 
vectors using the Vector Space model (Salton et al, 1975).  Alternatively, a document 
might be reduced to a matrix in a Tensor Space model.  But a matrix representation of a 
document, though it processes more quickly, does not produce appreciably better results 
(Cai et al, 2006), so we chose the more common Vector Space Model.   
 
 
Others have experimented with which feature extraction method is best (Rogati and Yang, 
2002).  Forman (2003) compares 12 feature selection methods.  He provides a table with 
the formula for each feature-selection metric (ibid, p. 1293).  Forman points out that 
different feature selection metrics excel with different data sets, and his appendix 
presents precision and recall charts that compare metrics according to number of words 
used for the classification.  Liu and Setiono (1995) demonstrated that Chi Square is 
effective for feature selection. Other research considers which text classification 
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algorithm performs best (Colas and Brazdil, 2006) and which kernel improves results 
further (Zhang, Chen and Lee, 2005).    
 
For classification, we use Support Vector Machines (SVM),3 because SVM has been 
found to perform well in text mining (Olson and Delen, 2008).   An overview of SVM is 
found in Xue, Yang and Chen (2009).  The data, in the case of documents, are composed 
of words, which the literature, calls attributes, or features, or dimensions.  Support vector 
classifiers use words; other researchers have used word clusters rather than individual 
words, with inferior results (Bekkerman, El-Yaniv, Tishby, Winter, 2003).    
 
 
Support Vector Machines belong to the Generalized Linear Models in statistics.  In 
computer science, they are part of Machine Learning, which “learns” based on data that is 
labeled.   A set of SVM algorithms was coded and gathered into a library by Hsu, Chang 
and Lin (2003).  We used a version of the algorithm from their LibSVM toolkit.   
 
 
SVM classification is an exercise in optimization.  The procedure first learns from 
labeled data where to group the classes, or vectors.  Then, with unseen data, it attempts to 
find maximum separation between vectors.  The Support Vector Classifier finds a 
hyperplane – called a classifier – that can divide two classes, or vectors, with maximal 
separation.  Better results are often achieved by relaxing the requirement that the 
separation be a linear plane.  A kernel function may be used to transform the data to non-
linear separation.  Soft margin optimization admits a few classification errors for the sake 
of better overall classification results.  It can be achieved either by adding a soft margin 
variable, or by using a kernel function to transform the data so it may be separated non-
linearly to optimize the groupings.   Most people just experiment to see which kernel 
works best with their particular data set.  While the Radial Basis Function (RBF) has 
been called the “natural choice,” no consensus has been reached as to which kernel 
parameters are optimal for a given data type (Olson and Delen, 2008, p.118, 122).  Others 
have found that after semantically strong features have been extracted, a linear SVM 
classifier is best (Yilmazel et al, 2008, p. 420).  
 
Computational performance (speed) among methods can differ significantly, which 
makes some researchers hesitant to assess classification on accuracy alone (Williams et al, 
2006).  For our purposes, speed is not critical since the computations can be set up to 
execute while the user’s attention is elsewhere.  
 
In personal information management, automatic document classification might create 
categories or folders that contain too many documents for a user to manage 
constructively.   So we use a clustering algorithm to subdivide large categories.  The 
problem is then that the clusters are unlabelled.   Maqbool and Babri (2006) created a 
cluster-labeling algorithm that uses frequency and inverse frequency to choose terms to 
be used as labels.  Tseng (2010) presents a generic method to label the clusters which 
first extracts category-specific terms using correlation coefficient algorithm (the square 
root of the chi-square) and then maps these to WordNet terms.  Our method to label 

                                                 
3 Support Vector Machines (SVM) were developed by Vapnik in the 1990s (Vapnik, 
1995).  Of all the classification methods, Support Vector Machines have been found to 
perform with high accuracy in many high dimensional applications, including medical 
diagnostics and bioinformatics, face recognition, as well as text mining (Olson and Delen, 
2008, 111-123).   
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clusters is similar to Tseng’s except that we use the Chi Square statistic.  Chi square turns 
out to be the square of the correlation coefficient (Tseng, 2010, p. 2248).    
 
 
Overly large categories are managed by clustering.  Clustering puts unlabelled articles 
into coherent groupings, and in this case, it would subdivide categories.  This is done in 
the Vivísimo search engine, for example.4  The problem is that the new labels that will be 
applied could be unfamiliar to the user.   Moreover, the labels designated for one cluster 
might be a subset of another label.  For example, one category might be grain, and 
another, corn and another, rice.  The corn cluster and the rice cluster logically are subsets 
of the grain, and so all could be placed into a single category.   We adjust for this 
circumstance and help the user get a quick overview of contents by attaching several 
labels to each newly-made cluster.   
 
Cross validation is often used to predict how well the classifier would perform on unseen 
data based on performance on labeled data.  In z-fold cross validation, we divide the 
training set into z equal-size subsets.  Each subset slice is tested sequentially using the 
classifier trained on z-1 slices.  Thus, each subset is predicted once.  Cross validation 
accuracy is the percentage of data that is classified correctly.   
 
Additional evaluation measures are precision and recall, and their combination in the 
harmonic mean, called the F measure.  

TruePositive number of  relevant items retrieved
P

TruePositive FalsePositive total number of  items retrieved
= =

+
 

 
TruePositive number of  relevant items retrieved

R
TruePositive TrueNegative total number of  relevant items in a collection

= =
+

 

 
2PR

F measure (harmonic mean of  precision and recall)=
P+ R

 

A true positive is an item that is correctly assigned to a category; a false positive is an 
item assigned that should not be; a true negative is an item that should not be assigned, 
and is not assigned.   False and true positives (incorrect and correct assignments of items 
to categories) may be visualized in what is called a confusion matrix.   An ROC graph 
captures all the points in the confusion matrix but is somewhat difficult to interpret.  We 
have translated results out of a confusion matrix to simplify the presentation. 
 
 
 
 
III.  Method   
 
The focus of our current research is on an actual use case.  For this, we worked with 
personal digital library software Mendeley, and a selection of article extracts from the 
biomedical digital library PubMed that had been labeled with Mendeley subject 
categories.  Our particular method, using Chi square for feature extraction and SVM for 
the classification, has been employed by others (Zhang and Zhang, 2008).   
 

                                                 
4 http://vivisimo.com, Retrieved May 13, 2010 
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An overview of our procedure is shown in Figure 2.  In brief, we pre-process the 
documents first.  This consists of removing stop words by comparison to a standard list.  
We make capital and lower case letters uniform by converting all to lower case, although 
this is not essential for classification.  Then suffixes were cropped in what is known as 
stemming or lemmatization.  For example, swimming and swims would be stemmed to 
swim.  The effect of stemming is that similar words get counted as repetitions of the same 
word, which results in a lower dimension, simpler Space Vector Model.    
 

 
Figure 2: Diagram of experimental procedure for classification.   
 
The Vector Space Model extracts content-bearing words to represent each document as a 
numerical vector.  It is a “Bag of Words” approach.  Word scores are computed based on 
semantic significance of the word in the document and in the collection as a whole.  For 
example, the word “house” that appears once in an article on medical equipment is not as 
good an indicator of category topic as “microscope”.   Since each word represents a 
dimension, the dimensionality of a document may be high.  A thousand-word document 
would have a dimensionality of 1000.  
 
We use tf–idf to compute a score for each word by [dividing the number of occurrence of 
the word by the total number of words in the particular document (tf)] and multiplying by 
the quotient of [total number of documents by the number of documents containing the 
term (idf)].  The Chi Square statistic compares the score of the word to the score of the 
category for all words in the document, and it ranks words according to semantic 
significance.  When the same word is found in more than one category, word scores are 
compared and only the single instance of the word that scores the highest is retained.   
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Once we have isolated words for each category using Chi Square, we are ready to create 
classifiers that will use these words to group unseen documents into the category.  For 
this, we use the Support Vector Classifier (SVC) algorithm.  A classifier uses as input the 
tf-idf numbers of documents along with the category number and, along with some 
additional computations, creates a hyperplane to separate the documents into two 
categories.  Each document is either assigned to the classifier’s category (positive), or 
rejected from the classifier category (negative).  A negative assignment diverts the 
document so that it is run in another classifier, with the possibility of being assigned to 
another category.    
 
 
We used the WEKA data mining tool set developed at the University of Waikato in New 
Zealand.5   The version of the SVC algorithm we used is not native to WEKA,; for this, 
we downloaded separately the LibSVM plugin.6   If our project were to be implemented 
on a server, we would recommend LibSVM because WEKA classifiers admits only small 
data sets.   

  
We found through experimentation that the Reuters news data classified most accurately 
with a linear kernel, whereas the PubMed articles classified most accurately with the RBF 
kernel (Figure 6).  This distinction seems largely data-dependent.  We could program a 
system to select the optimal performance kernel based on the articles the user had 
organized into category folders, and we could test the model via cross validation.  This is 
expanded in the Discussion section below.   
 
In cases where the classification algorithm assigns overly many documents to a folder so 
that the folder is no longer convenient for personal information management, we propose 
subdividing the folder by clustering.  Some have offered users the opportunity to 
customize clustering results, as does Bekkerman et al. (2007) and Huang and Mitchell 
(2006), but the customization entails that the user present examples of what he wishes 
clustered.  For our part, we feel that mixed initiative clustering will be too much of a 
chore for users, so we wholly automate the clustering.  
 
 
 
IV. Experiments 
 
Data 
 
Subjecting different data sets to the same procedure will yield different accuracies, so we 
used more than one data set to test our procedure.  We use the Reuters news article 
collection designated 21578 that appeared on the Reuters news line in 1987.  The articles 
were assembled and indexed by personnel from Reuters Ltd. and the Carnegie Group, 
Inc.7  The entire corpus contains 11,367 manually-labeled documents classified into 82 
category groups.    
 

                                                 
5 WEKA may be downloaded as of June 2010 from 
http://www.cs.waikato.ac.nz/ml/weka/ 
6 LIBSVM: A Library for Support Vector Machines, as of July 7, 2010 at 
http://www.csie.ntu.edu/tw/~cjlin/libsvm 
7  As of April 2010, the corpus was at http://www.daviddlewis.com/ 
resources/testcollections/reuters21578/ 
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Our second corpus consists of 1000 title/abstract document excerpts downloaded from 
the biomedical digital library PubMed, and that has been classified into 516 categories.     
 
Procedure 
Sampling method.   We selected in each data set the 10 categories that contained the 
largest number of articles to help ensure that we would have enough data (that is, articles) 
to train the category classifier.  This amounted to 500 articles from Reuters, and 308 
abstracts from the PubMed set.  
 
Pre-processing.  We prepared the data by converting all text into lower case, removing 
stop words,8 and applying a stemming algorithm. 
 
Processing.  We used the Space Vector Model based on tf-idf weighting to correlate 
frequency of word in each document with that in the document set as a whole.  This 
produces a numerical score for each word.  We used the Chi Square statistic in an 
algorithm that uses the word scores to rank the features within the category.  The result is 
that the higher numbered words “belong” more to the category and are more important 
indicators of category.  These words become input for the SVM algorithm, which creates 
a classifier for each category.  Each category has learned a different instance of the 
classifier.   
 
Cross-validation.  The benchmark for accuracy is the manual classification of the articles, 
with accuracy defined as the number of articles automatically classified into the 
manually-determined categories.  The document set is divided into parts and the model is 
tested on unseen data.  In this case, we divided the collection into 10 parts, using 9 for 
training and the remaining 1 for testing.   We re-shuffled the parts and used a different 9 
for training and the remaining part for testing, over the course of 10 runs.   The results 
from the 10 runs are then averaged.  We achieved 96% accuracy on the Reuters data set, 
and 89% accuracy on the PubMed data set.  (see Figure 3).  
 
Assigning additional labels 
After each document is assigned a category, we run words from each category through 
the Chi Square algorithm to find the three highest scoring words that appear in the 
document cluster.  We can then assign additional words as labels to clarify category 
folder contents.    
 
V.  Results 
Reuters data set reduced to 100 features   
Correctly classified instances 482 96% 
Incorrectly classified instances 18 4% 
Total number of documents 500   
Total features (words) 4256   
       
PubMed data set reduced to 100 features   
Correctly classified instances 274 89% 
Incorrectly classified instances 34 11% 

                                                 
8 The stop word list we used was downloaded from the Journal of Machine Learning 
Research, retrieved  April 30, 2010 from 
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop  
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Total number of documents 308   
Total features (words) 4799   

    
Figure 3: Classification results for the two data sets, with  

100 words (that is, features) for each. 
 
Figure 3 shows resulting classification accuracy for the two data sets under parallel 
constraints (here, the same number of features run through the classifier and the same 
kernel). 
 
Figure 4 compares the F measure results per number of features in the two data sets.  
Both data sets peak at roughly 200 features.  This suggests that it might be unnecessary to 
run a large numbers of features for optimal results on an unseen data set.   How many 
documents are needed to achieve 200 features per category?  This depends upon the total 
number of categories as well as the average length of the documents.   

 
Figure 4  Accuracy measures from same classification procedure 

in two different data sets suggest that 100-200 features (words) suffice.    
 

VI. Analysis 
 

Why did the classifiers perform better on the Reuters data?   The Reuters data have been 
called simple to classify (Bekkerman and Allan, 2003).  In the category “ship” randomly 
sampled from this data set, quite a few instances of the word “ship” are found among key 
features extracted (Figure 5a).   
 
The comparison between the Reuters and PubMed data in Figures 5a and 5b shows the 
top Chi Square words of documents assigned to the Reuters category “ship” and PubMed 
category “neurobiology.”  The features that do not appear to be words are actually 
abbreviations. FVN is a Netherlands insurance company in the Reuters data sets, and 
NMDA in the PubMed data set is a glutamate receptor.    
 
In the given samples, document 4 in the Reuters data set (Figure 5a) and documents 19, 
24, 28, 30 in the PubMed data (Figure 5b) have been mis-assigned to their respective 
categories.  The reason?  Guilt by association.  The features in the mis-classified 
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documents are associated with other documents that are correctly classified, but in these 
particular cases, the association misleads into a classification assignment that is false.   
 
 
 

Category: SHIP (From Reuters-21578) 

Document 1:  
vessel, ship, herald, ferry, rotterdam, transport, enterprise, cargo, 
capsize, zeebrugge, channel, british, disaster, crew, owner, 
navigate, harbour, water, accident, load, belgian, free  

Document 2:  vessel, dispute, transport, water, northwest, ice  
Document 3:  vessel, ship, port, halt, city, northwest  
Document 4:  ship, port, cargo, channel, handle  

Document 5:  vessel, ship, herald, ferry, enterprise, cargo, passenger, zeebrugge, 
shipowner, townsend, disaster, court, crew, navigate, accident, free  

Document 6:  
vessel, ship, port, strike, transport, seamen, marine, janeiro, 
harbour, halt, de, merchant, idle  

Document 7:  ship, port, cargo, handle  

Document 8:  port, strike, dispute, rotterdam, transport, cargo, fnv, redundancy, 
de, louw  

Document 9:  port, dispute, rotterdam, transport, cargo, fnv, court, redundancy  

Document 10:  
herald, ferry, transport, enterprise, passenger, dead, townsend, 
channel, british, disaster, rescue, owner, water, de, belgian, 
hundred, free, ice  

 
Figure 5a:  Key words extracted per document and ranked via Chi Square from the 

Reuters category “Ship”.  Highlighted document 4 is a mis-classification.     
 
 

Category: NEUROBIOLOGY (From PubMed) 

Document 17:  
neuron, depolarization, potential, amplitude, record, fire, action, 
afferent, serotonin, impulse, ht, accompany, fiber, mechanical  

Document 18:  neuron, synapse, hippocampus, efficacy  
Document 19:  neuron, synapse, postsynaptic, efficacy, afferent, input  

Document 20:  
neuron, synapse, brain, potential, underlie, efficacy, blockade, 
gene, mechanical  

Document 21:  synapse, brain, plastic, underlie, accompany, cerebellar, gene  

Document 22:  
neuron, synapse, hippocampus, amplitude, plastic, NMDA, spine, 
accompany, mechanical  

Document 23:  axon, record, stimulate, cardiovascular, fire, impulse, baroreceptor, 
discharge, nerve, blockade, reflex, artery  

Document 24:  neuron, fire, input  

Document 25:  
neuron, brain, evoke, depolarization, potential, record, plastic, nt, 
tractus, action, afferent, respiratory, clamp, solitary, input, nerve, 
fiber, central, mechanical  

Document 26:  synapse, brain, plastic, underlie, efficacy, mechanical  

Document 27:  
neuron, synapse, brain, evoke, amplitude, postsynaptic, inhibitory, 
NMDA, latency, cerebellar, mechanical  

Document 28:  neuron, synapse, synapse, postsynaptic, record, afferent, input  

Document 29:  
synapse, evoke, depolarization, potential, synapse, postsynaptic, 
record, stimulate, presynaptic, action, inhibitory, central, 
mechanical, ca  

Document 30:  underlie, reflex, central, mechanical  



 11 

Document 31:  neuron, synapse, synapse, plastic, clamp, input  
 

Figure 5b: Highlighted documents are mis-classifications.  In this data set as in the 
Reuters examples in Figure 5a, at the key feature words in the mis-classified documents 

appear in the correctly classified documents.  
 
 
Our experiments here have shown that excellent classification results are possible with 
title and abstract only.  Would we have achieved better results had we used the full text of 
the PubMed articles along with title and abstract?   Further experiments are needed.  
   

VII. Discussion 
 

What makes a good classifier?  
 
We used only a subset of the Reuters 21578 corpus.  For the sample we used, the 
“Copper” classifier works best, achieving 98% accuracy, while the worst is “Grain,” 
achieving only 59% accuracy.  For the PubMed data set, the best classifier is 
“Experimental Psychology” at 71%, while the worst is “Microbiology” at 0% accuracy.     
 
Our best classifiers did not necessarily become more accurate when built through a larger 
training set.   However, the classifiers that performed the worst had among the fewest 
documents in the training set, as shown in Figure 6.   The best classifiers include a good 
distribution of words as determined by tf-idf weighting that are strong indicators of 
category.   Figure 6 shows that the Reuters data performed best with the linear kernel, 
whereas the PubMed data performed best with the RBF kernel.  We do not know why, 
but it might have to do with the particular terms and their distribution in the document.  
 
Reuters 21578 

Binary SVM 

Classifier  

Documents 
assigned 

manually to 
categories 

Number of 
documents 

assigned 
automatically 
to the correct 

categories: 
linear kernel 

Number of 
documents 

assigned 
automatically 
to the correct 

categories: 
RBF 

Ship 46 35 41 

Jobs 49 44 28 

Sugar 66 60 66 

Grain 28 19 24 

Crude 105 94 98 

Money 52 45 25 

Trade 44 35 38 

Coffee 44 42 40 

Copper 42 42 42 

Cotton 24 21 23 



 12 

 
PubMed 

Binary SVM 

Classifier  

Documents 
assigned 

manually to 
categories 

Number of 
documents 

assigned 
automatically to 

the correct 
categories: linear 

kernel 

Number of 
documents 

assigned 
automatically to 

the correct 
categories: RBF 

Bioinformatics 60 35 41 

Genetics 26 5 18 

Neurobiology 57 25 40 

Biochemistry 28 9 24 

Molecular Biology 29 9 25 

Cellular Biology 23 1 17 

Experimental Psychology 34 14 27 

Artificial Intelligence 23 6 18 

Microbiology 
 

  8                                               0 7 

Biophysics 20 5 16 
 

 
Figure 6: Classifier categories and number of training documents per category, with 
comparison of the linear and RBF kernel.   
 
 
How could the procedure be modified to make fewer classification mistakes? 
 
A possible way to improve classification for the PubMed data would be to bridge the gap 
between terms found in the biomedical articles and the category terms of Mendeley.  In 
similar document classification experiments, Wang and Domeniconi (2008) and 
Gabrilovich and Markovitch (2006) extracted concepts from Wikipedia, along with 
synonymous and associated concepts, and used these to enrich the features extracted from 
the document set.  Even though the Gabrilovich and Markovitch results improved with 
the ontology-enrichment, the improvement was only marginal (Wang and Domeniconi, 
2008, p. 20, Table 10).   
 
Another method to improve results in both data sets would be to weight words in article 
titles more than words in the abstract, a method that appeared in Dumais et al. (1998).  
Another direction of research might be to use phrases as well as words for classification.  
It has also been noted that bi-grams (phrases) may be more predictive than single words 
(Yang and Pedersen, 1997). 
 
Our classification method permits recall to suffer for the sake of precision.  That is, we 
permit the cost of errors in recall to be less than the cost of errors in precision.  In some 
applications, such as in threat research, a false negative could lead to risky consequences 
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if a critical problem goes undetected.  For the goal of increasing recall, then, other 
classification methods might be preferred (Seo and Sycara, 2008).   
 
What options should we present to the user? 
 
We require the user’s existing documents in labeled folders, say, in Mendeley 
information management software, as preparation for automatic filing.   The procedure 
might begin with a “Test for Accuracy” button, which would start an algorithm to 
compare results with different SVM kernels to see which would yield highest 
classification accuracy.  The system then would present the user with a message such as 
“Expect 75% accuracy or greater when adding documents to the current folders,” with an 
option for more information that would show the number of features, kernel selected, and 
technical details. 
 
The system requires a minimum accuracy for placing unseen documents in folders for it 
to be a reliable desktop tool.  What percent accuracy is required in document organization 
should be tested through user study.   For the sake of discussion, let’s say the system’s 
accuracy tolerance is set to 70%.  That would mean that when the system self-tests and 
obtains an accuracy of 69% or less, and some user interaction to improve accuracy would 
be requested.  The system would either ask the user for more documents to re-test, or it 
would ask the user to merge the contents of two folders.   In re-testing a classification, the 
system could either send each item in a category to each classifier and then compare F 
scores of each classifier to find an alternative category for filing, or else switch to multi-
class SVM to determine an alternate category.  A more involved approach would be to 
retain inferior classifications and ask the user to select those items that do not fit with the 
others, so that the system could learn it had made an error.  This is the protocol suggested 
for the Lighthouse system by Leuski and Allen (2000).  This possibility requires some 
effort on the part of the user and so we do not believe many users will find it attractive.  
 
 
Rather than ask the user to make (negative) decisions about what may have been put in a 
category wrongly, the system might ask the user to make (positive) classification 
decisions and add documents to the category that did not self-classify accurately.  A 
message might be “Please add [number needed to make 10 total] documents to the [folder 
achieving low accuracy].  Or perhaps, the system could adopt Google’s humility.  “Well, 
this is embarrassing.  We do not have enough documents in the [folder achieving low 
accuracy] to perform the classification.  However, if you add more documents we would 
do better.”  So even a positive decision requires some effort, so we think many users will 
find this option unattractive too.      
 
Perhaps the best approach from a usability standpoint would be to ask the user his 
opinion whether two categories could be merged.   The message could be something like 
“Consider merging the [folder achieving low accuracy in classification] with [second best 
folder category].   For example, a message might be “Consider merging the Microbiology 
folder with Bioinformatics.”   
 
 
Should we limit the number of documents per category folder? 
 
Our sample data sets include between 8 and 105 documents per category (Figure 7a and 
7b).  Perhaps 15 or 20 are minimally necessary per category to train the classifier.  But do 
users care to look over so many documents to find the one of interest?   A user study 
would be necessary to confirm what is preferred, but we believe that 70 documents is too 
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large for a single folder, and 5 may be so small that it just wastes space.  We propose for 
the purposes of this present study that between perhaps 6 and 40 documents per folder is 
manageable.   
 
Folder size (or category size) thus becomes a factor in the personal information 
environment.  So we run a clustering algorithm over overly-large folders to organize the 
documents into subgroups, or sub-folders.9  We use K-means clustering which has been 
found to work well independent of the data domain.   
 
As a default for subdividing large folders, we create 3 subgroups.   After clustering, if 
one of the three subgroups has more than 40 documents, we will re-classify the 
documents and create 4 subgroups instead (changing the default from 3 to 4).  But if after 
the initial clustering, one of the 3 subgroups has 5 or fewer documents, we change the 
default from 3 to 2 and re-run the clustering to make 2 subgroups.   
 
It is necessary to label the newly-formed grouped so that users have an idea of what the 
folder contains.  We create category labels automatically by running Chi Square to assign 
word scores to document words.  We can then use these words to label the subgroups, or 
subfolders.  One label is probably insufficient, and anyway might be ambiguous, so we 
assign 3 to 5 labels.  In the event that the same word appears in more than one subgroup, 
we can use these scores also to select the highest-scoring word and remove duplicates so 
that the same word is not used as a label for more than one subfolder.    
 
Reuters 21578 

Becomes subcategories 
Classification 

category 

Documents 
assigned 

manually to 
categories 

Number of 
documents 

in subgroup 
Keywords for subgroup 

18 Free, Ferry, Enterprise, Herald, 
Channel 

17 Strike, Union, Port, Dispute, Marine Ship 46 

11 
Line, Northwest, Snow, Sea, 
Rotterdam 

16 Record, Worst, Compile, Number, 
Unadjusted 

20 
Workforce, Office, Unemployed, 
Job, Manufacture 

Jobs 49 

14 
Labor, Insure, Program, Prior, 
Regular 

36 Beet, Yield, Hungary, Hectare, Sow 

9 
Intervene, Rebate, Commis, License, 
Maximum Sugar 66 

21 West, Germany, European, France, 
French 

11 Distil, Refinery, Gasoline, PDVSA, 
Price 

Crude 105 

30 
Crude, Explore, Drill, Recommend, 
Study 

                                                 
9 We use sub-folders and subgroups interchangeably.  
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14 
Earthquake, Ecuador, Jungle, Balao, 
Repair 

26 Saudi, Arabia, Ceil, Defend, Lift 
18 Bbl, Post, Raise, WTI, Intermediate 
17 Fed, Business, March, Money, Loan 

23 
Supply, Growth, Define, Asset, 
Exclude Money 52 

12 Dlr, Lend, Week, Bundesbank, 
Sterling 

11 Japanese, Surplus, Japan, Electron, 
Baker 

19 
Bill, Subcommittee, Toughen, 
Unfair, Democrat 

Trade 44 

14 Billion, Deficit, Import, Retaliate, 
Legislate 

16 Gaviria, Cesar, Factor, Gilberto, 
Arango 

14 
Colombia, Delegable, Intern, 
Consume, Talk 

Coffee 44 

14 Delegable, Council, Group, Meet, 
April 

18 Lower, Effect, Cathod, Immediate, 
Lb 

7 Fire, Noranda, Kill, Trap, Full Copper 42 

17 
Chile, Confirm, Zambia, Chilean, 
Cent 

 
Figure 7a  The table shows the number of Reuters documents manually assigned to the 
Reuters categories, and for each sub-grouping, 5 keywords found via the Chi Square 
statistic which we use for folder labels. 
 
Pubmed 

Becomes subcategories 
 

Classifier 

Documents 
assigned 

manually to 
categories 

Number 
of 

documents 
in 

subgroup 

Keywords for subgroup 

17 Genome, Biology, Analyze, Chain, 
Indelible 

25 
Gene, Regulatory, Genetic, Biologist, 
Web 

Bioinformatics 60 

18 Thermophile, Temperature, Residual, 
Acid, Amino 

21 Record, Response, Afferent, Nerve, 
Nucleus 

18 Dendrite, Spine, IPSC, Acute, Axon Genetics 57 

17 
Memory, Neural, Depend, Learn, 
Gene 
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Figure 7b The table shows the number of PubMed documents manually assigned to the 
Mendeley categories, and for each sub-grouping, 5 keywords found via the Chi Square 
statistic which we use to label the newly-formed subfolders. 
 
 
VIII. Summary 
 
Our contribution rests in the proposed adaption of standard classification and labeling 
procedures to personal information management.  We use as training data the articles the 
user has already filed and the (presumably) subject label he has already assigned to each 
category folder for the machine learning task.  We ran experiments on two data sets to 
see whether our accuracy was domain dependent, and found that our procedures worked 
well on both more general data and also domain-specific, technical medical data, 
although procedures worked better in the more general domain. 
 
The general data was the Reuters text categorization set 21578 and the domain-specific 
data was a set of article titles with abstracts from PubMed.  Both had manual 
classifications that we used to measure automatic classifications.  The Chi Square feature 
selection method to isolate keywords to classify, followed by the Support Vector 
Machine algorithm to classify, yielded 96% accuracy on the “easy” Reuters data and 89% 
accuracy on the more technical PubMed data.  The PubMed abstracts were part of our 
use-case scenario, demonstrating a research article collection stored in the personal 
information management software Mendeley.  We proposed a procedure to test 
classifications without inconveniencing the user, and some choices to present to the user 
to improve classification accuracy for unseen documents.   
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