
Automatic document filing according to user categories

Dong CAO* Judith GELERNTER Jaime CARBONELL

Carnegie Mellon University
Pittsburgh, PA U.S.A.

* Also, Beijing University of Posts and Telecommunications

Abstract
Suppose you have just acquired a number of articles into a personal digital library. The
classification procedures described here would allow those articles to be automatically
sorted in your pre-existing desktop folders. We use the Chi-square statistic to find
keywords that we use to classify the articles, and the Support Vector Classifier to
organize the articles in folders. Moreover we have adapted the process so that minimal
feedback from users should improve classification results, and folders do not contain
overly many articles for information management convenience. We achieved an average
of 96% accuracy over 10 trials with the Reuters 21578 news data, and 89% accuracy over
10 trials with biomedical literature downloaded from the PubMed digital library. We
conclude that in a personal desktop environment, whether general or highly specific, our
classification methods for automatic filing into the user’s own familiar folders would
achieve high accuracy.

Keywords: classification, personal digital document management, personal information
management, document organization, digital library, SVM, Chi square, text
categorization

I. Introduction

A study on information preferences found that users like to search for a document by
location, that is, the location on their own computer, so that they do not need to
remember the file name (Barreau and Nardi, 1995). Our procedures would allow users
to keep their familiar categories and acquire documents en masse, to be filed
automatically. Automatically filing stands to be become even more useful in the near
future as consumers might be acquiring music, articles, photos, and video on a single
device (ICT, 2010).

The challenge of automatic filing was presented to us by the director of the personal
information management software, Mendeley. 1 He told us that his users requested
automatic filing such as is found in the MacIntosh Smart Folder or the iTunes Smart
Playlist. We know that users tend to assign filing categories that mix genre, category,
task and time (Henderson, 2005), and that retrieval by date or media is straightforward.
As a research project, we focus on automatic filing by subject. We use Mendeley as an
environment for a user scenario.

Mendeley software stores articles and provides its own categories for organization. Over
120,000 downloads of the software were counted as of January 2010, and there are
almost 100,000 registered users. Our procedure will allow users to file unseen
documents automatically into user-defined categories. The same procedure could be used

1 Dr. Jason Hoyt, Director of the Academic Reference Management software Mendeley,
at http://www.mendeley.com/

 2

to organize an entire collection of articles into Mendeley category for storing on the back
end on the company’s server.2

Consider this use case to demonstrate how our auto-file system would work. A
Mendeley customer stores his articles in category folders for Artificial Intelligence,
Biochemistry, Bioinformatics, Experimental psychology, Genetics, Molecular biology
and Neurobiology. A screen shot of the software desktop, left-hand column, shows these
labelled folders (Figure 1). The customer, a scientist, has just downloaded a set of
articles sent by one of his colleagues. These articles are as yet unsorted, and most are
unread, as indicated by the un-bold dot preceding the article title (see right pane of screen
in Figure 1). The addition of our classification procedures would tuck the new articles
into the existing folder categories. Each article is assigned one category only.

The articles in the user’s folders are used as training data. The more articles the user has
in a folder, the more likely that new articles will be classified correctly. Our procedure
uses data mining to find keywords, statistics to prioritize key words, and machine
learning to acquire the algorithm that will predict in which categories unseen articles
should be filed.

Figure 1: Personal file folders within Mendeley

Our research centers on automatic filing of unseen documents into user-defined
categories (in the present context, folders), what can be done to minimize automatic filing
errors, and how to keep the folders of manageable size.

2 Mendeley top level categories correspond to research disciplines, and each is in turn
subdivided for finer organization. See http://www.mendeley.com/research-papers/

 3

Questions guiding our work are:
* How can we organize newly-acquired documents automatically into subject
categories (of a user’s existing folders)?
* What can we do to minimize filing error?
* What options should we present to the user to improve results?
* How can we keep folder sizes convenient for information management?

The paper continues with a discussion of related work. Then system architecture is
diagrammed and each of the components is explained. We describe our experiments on
two data sets, a data set from Reuters designated as a test collection for text classification
research, and a collection of title-abstract excerpts from the biomedical digital library
PubMed for a user scenario. We rely upon manual classifications from both data sets as
the benchmark for our automatic categories. We discuss strengths and weakness of our
system, what can be improved, and future directions for research. Conclusions highlight
the significance of our automatic classification and how it will be possible for others to
build upon our research.

II. Related work

We are attempting to sort articles into pre-existing categories within a personal
information management environment. An early prototype of such an environment was
the TEXPROS system of Fan, Liu, and Ng (1999). It extracts an abstract for each
document, whether or not the document has its own abstract, and then it organizes these
abstracts in folders according to predefined user criteria such as sender, receiver, subject,
date, journal or author. Our research focuses on the most complicated of these filing
problems: filing according to subject.

We use classification for document organization because it allows the user’s familiar
category labels to be retained, and because it is more likely to result in coherent
groupings with fewer items that do not belong in the group. Automatic classification
systems for specific domains have used ontologies to improve indexing (Morais and
Ambrósio, 2008). When the document is general or unknown, approaches which use
general purpose ontologies such as those created from the online encyclopedia,
Wikipedia, might improve classification results to some extent (Syed, Finin and Joshi,
2008). Classification improvements due to adding ontologies, however, probably will be
relatively minor (Wang and Domeniconi, 2008).

The procedure begins by transforming words to numbers. We reduce each document to
vectors using the Vector Space model (Salton et al, 1975). Alternatively, a document
might be reduced to a matrix in a Tensor Space model. But a matrix representation of a
document, though it processes more quickly, does not produce appreciably better results
(Cai et al, 2006), so we chose the more common Vector Space Model.

Others have experimented with which feature extraction method is best (Rogati and Yang,
2002). Forman (2003) compares 12 feature selection methods. He provides a table with
the formula for each feature-selection metric (ibid, p. 1293). Forman points out that
different feature selection metrics excel with different data sets, and his appendix
presents precision and recall charts that compare metrics according to number of words
used for the classification. Liu and Setiono (1995) demonstrated that Chi Square is
effective for feature selection. Other research considers which text classification

 4

algorithm performs best (Colas and Brazdil, 2006) and which kernel improves results
further (Zhang, Chen and Lee, 2005).

For classification, we use Support Vector Machines (SVM),3 because SVM has been
found to perform well in text mining (Olson and Delen, 2008). An overview of SVM is
found in Xue, Yang and Chen (2009). The data, in the case of documents, are composed
of words, which the literature, calls attributes, or features, or dimensions. Support vector
classifiers use words; other researchers have used word clusters rather than individual
words, with inferior results (Bekkerman, El-Yaniv, Tishby, Winter, 2003).

Support Vector Machines belong to the Generalized Linear Models in statistics. In
computer science, they are part of Machine Learning, which “learns” based on data that is
labeled. A set of SVM algorithms was coded and gathered into a library by Hsu, Chang
and Lin (2003). We used a version of the algorithm from their LibSVM toolkit.

SVM classification is an exercise in optimization. The procedure first learns from
labeled data where to group the classes, or vectors. Then, with unseen data, it attempts to
find maximum separation between vectors. The Support Vector Classifier finds a
hyperplane – called a classifier – that can divide two classes, or vectors, with maximal
separation. Better results are often achieved by relaxing the requirement that the
separation be a linear plane. A kernel function may be used to transform the data to non-
linear separation. Soft margin optimization admits a few classification errors for the sake
of better overall classification results. It can be achieved either by adding a soft margin
variable, or by using a kernel function to transform the data so it may be separated non-
linearly to optimize the groupings. Most people just experiment to see which kernel
works best with their particular data set. While the Radial Basis Function (RBF) has
been called the “natural choice,” no consensus has been reached as to which kernel
parameters are optimal for a given data type (Olson and Delen, 2008, p.118, 122). Others
have found that after semantically strong features have been extracted, a linear SVM
classifier is best (Yilmazel et al, 2008, p. 420).

Computational performance (speed) among methods can differ significantly, which
makes some researchers hesitant to assess classification on accuracy alone (Williams et al,
2006). For our purposes, speed is not critical since the computations can be set up to
execute while the user’s attention is elsewhere.

In personal information management, automatic document classification might create
categories or folders that contain too many documents for a user to manage
constructively. So we use a clustering algorithm to subdivide large categories. The
problem is then that the clusters are unlabelled. Maqbool and Babri (2006) created a
cluster-labeling algorithm that uses frequency and inverse frequency to choose terms to
be used as labels. Tseng (2010) presents a generic method to label the clusters which
first extracts category-specific terms using correlation coefficient algorithm (the square
root of the chi-square) and then maps these to WordNet terms. Our method to label

3 Support Vector Machines (SVM) were developed by Vapnik in the 1990s (Vapnik,
1995). Of all the classification methods, Support Vector Machines have been found to
perform with high accuracy in many high dimensional applications, including medical
diagnostics and bioinformatics, face recognition, as well as text mining (Olson and Delen,
2008, 111-123).

 5

clusters is similar to Tseng’s except that we use the Chi Square statistic. Chi square turns
out to be the square of the correlation coefficient (Tseng, 2010, p. 2248).

Overly large categories are managed by clustering. Clustering puts unlabelled articles
into coherent groupings, and in this case, it would subdivide categories. This is done in
the Vivísimo search engine, for example.4 The problem is that the new labels that will be
applied could be unfamiliar to the user. Moreover, the labels designated for one cluster
might be a subset of another label. For example, one category might be grain, and
another, corn and another, rice. The corn cluster and the rice cluster logically are subsets
of the grain, and so all could be placed into a single category. We adjust for this
circumstance and help the user get a quick overview of contents by attaching several
labels to each newly-made cluster.

Cross validation is often used to predict how well the classifier would perform on unseen
data based on performance on labeled data. In z-fold cross validation, we divide the
training set into z equal-size subsets. Each subset slice is tested sequentially using the
classifier trained on z-1 slices. Thus, each subset is predicted once. Cross validation
accuracy is the percentage of data that is classified correctly.

Additional evaluation measures are precision and recall, and their combination in the
harmonic mean, called the F measure.

TruePositive number of relevant items retrieved
P

TruePositive FalsePositive total number of items retrieved
= =

+

TruePositive number of relevant items retrieved

R
TruePositive TrueNegative total number of relevant items in a collection

= =
+

2PR

F measure (harmonic mean of precision and recall)=
P+ R

A true positive is an item that is correctly assigned to a category; a false positive is an
item assigned that should not be; a true negative is an item that should not be assigned,
and is not assigned. False and true positives (incorrect and correct assignments of items
to categories) may be visualized in what is called a confusion matrix. An ROC graph
captures all the points in the confusion matrix but is somewhat difficult to interpret. We
have translated results out of a confusion matrix to simplify the presentation.

III. Method

The focus of our current research is on an actual use case. For this, we worked with
personal digital library software Mendeley, and a selection of article extracts from the
biomedical digital library PubMed that had been labeled with Mendeley subject
categories. Our particular method, using Chi square for feature extraction and SVM for
the classification, has been employed by others (Zhang and Zhang, 2008).

4 http://vivisimo.com, Retrieved May 13, 2010

 6

An overview of our procedure is shown in Figure 2. In brief, we pre-process the
documents first. This consists of removing stop words by comparison to a standard list.
We make capital and lower case letters uniform by converting all to lower case, although
this is not essential for classification. Then suffixes were cropped in what is known as
stemming or lemmatization. For example, swimming and swims would be stemmed to
swim. The effect of stemming is that similar words get counted as repetitions of the same
word, which results in a lower dimension, simpler Space Vector Model.

Figure 2: Diagram of experimental procedure for classification.

The Vector Space Model extracts content-bearing words to represent each document as a
numerical vector. It is a “Bag of Words” approach. Word scores are computed based on
semantic significance of the word in the document and in the collection as a whole. For
example, the word “house” that appears once in an article on medical equipment is not as
good an indicator of category topic as “microscope”. Since each word represents a
dimension, the dimensionality of a document may be high. A thousand-word document
would have a dimensionality of 1000.

We use tf–idf to compute a score for each word by [dividing the number of occurrence of
the word by the total number of words in the particular document (tf)] and multiplying by
the quotient of [total number of documents by the number of documents containing the
term (idf)]. The Chi Square statistic compares the score of the word to the score of the
category for all words in the document, and it ranks words according to semantic
significance. When the same word is found in more than one category, word scores are
compared and only the single instance of the word that scores the highest is retained.

 7

Once we have isolated words for each category using Chi Square, we are ready to create
classifiers that will use these words to group unseen documents into the category. For
this, we use the Support Vector Classifier (SVC) algorithm. A classifier uses as input the
tf-idf numbers of documents along with the category number and, along with some
additional computations, creates a hyperplane to separate the documents into two
categories. Each document is either assigned to the classifier’s category (positive), or
rejected from the classifier category (negative). A negative assignment diverts the
document so that it is run in another classifier, with the possibility of being assigned to
another category.

We used the WEKA data mining tool set developed at the University of Waikato in New
Zealand.5 The version of the SVC algorithm we used is not native to WEKA,; for this,
we downloaded separately the LibSVM plugin.6 If our project were to be implemented
on a server, we would recommend LibSVM because WEKA classifiers admits only small
data sets.

We found through experimentation that the Reuters news data classified most accurately
with a linear kernel, whereas the PubMed articles classified most accurately with the RBF
kernel (Figure 6). This distinction seems largely data-dependent. We could program a
system to select the optimal performance kernel based on the articles the user had
organized into category folders, and we could test the model via cross validation. This is
expanded in the Discussion section below.

In cases where the classification algorithm assigns overly many documents to a folder so
that the folder is no longer convenient for personal information management, we propose
subdividing the folder by clustering. Some have offered users the opportunity to
customize clustering results, as does Bekkerman et al. (2007) and Huang and Mitchell
(2006), but the customization entails that the user present examples of what he wishes
clustered. For our part, we feel that mixed initiative clustering will be too much of a
chore for users, so we wholly automate the clustering.

IV. Experiments

Data

Subjecting different data sets to the same procedure will yield different accuracies, so we
used more than one data set to test our procedure. We use the Reuters news article
collection designated 21578 that appeared on the Reuters news line in 1987. The articles
were assembled and indexed by personnel from Reuters Ltd. and the Carnegie Group,
Inc.7 The entire corpus contains 11,367 manually-labeled documents classified into 82
category groups.

5 WEKA may be downloaded as of June 2010 from
http://www.cs.waikato.ac.nz/ml/weka/
6 LIBSVM: A Library for Support Vector Machines, as of July 7, 2010 at
http://www.csie.ntu.edu/tw/~cjlin/libsvm
7 As of April 2010, the corpus was at http://www.daviddlewis.com/
resources/testcollections/reuters21578/

 8

Our second corpus consists of 1000 title/abstract document excerpts downloaded from
the biomedical digital library PubMed, and that has been classified into 516 categories.

Procedure
Sampling method. We selected in each data set the 10 categories that contained the
largest number of articles to help ensure that we would have enough data (that is, articles)
to train the category classifier. This amounted to 500 articles from Reuters, and 308
abstracts from the PubMed set.

Pre-processing. We prepared the data by converting all text into lower case, removing
stop words,8 and applying a stemming algorithm.

Processing. We used the Space Vector Model based on tf-idf weighting to correlate
frequency of word in each document with that in the document set as a whole. This
produces a numerical score for each word. We used the Chi Square statistic in an
algorithm that uses the word scores to rank the features within the category. The result is
that the higher numbered words “belong” more to the category and are more important
indicators of category. These words become input for the SVM algorithm, which creates
a classifier for each category. Each category has learned a different instance of the
classifier.

Cross-validation. The benchmark for accuracy is the manual classification of the articles,
with accuracy defined as the number of articles automatically classified into the
manually-determined categories. The document set is divided into parts and the model is
tested on unseen data. In this case, we divided the collection into 10 parts, using 9 for
training and the remaining 1 for testing. We re-shuffled the parts and used a different 9
for training and the remaining part for testing, over the course of 10 runs. The results
from the 10 runs are then averaged. We achieved 96% accuracy on the Reuters data set,
and 89% accuracy on the PubMed data set. (see Figure 3).

Assigning additional labels
After each document is assigned a category, we run words from each category through
the Chi Square algorithm to find the three highest scoring words that appear in the
document cluster. We can then assign additional words as labels to clarify category
folder contents.

V. Results
Reuters data set reduced to 100 features
Correctly classified instances 482 96%
Incorrectly classified instances 18 4%
Total number of documents 500
Total features (words) 4256

PubMed data set reduced to 100 features
Correctly classified instances 274 89%
Incorrectly classified instances 34 11%

8 The stop word list we used was downloaded from the Journal of Machine Learning
Research, retrieved April 30, 2010 from
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop

 9

Total number of documents 308
Total features (words) 4799

Figure 3: Classification results for the two data sets, with

100 words (that is, features) for each.

Figure 3 shows resulting classification accuracy for the two data sets under parallel
constraints (here, the same number of features run through the classifier and the same
kernel).

Figure 4 compares the F measure results per number of features in the two data sets.
Both data sets peak at roughly 200 features. This suggests that it might be unnecessary to
run a large numbers of features for optimal results on an unseen data set. How many
documents are needed to achieve 200 features per category? This depends upon the total
number of categories as well as the average length of the documents.

Figure 4 Accuracy measures from same classification procedure

in two different data sets suggest that 100-200 features (words) suffice.

VI. Analysis

Why did the classifiers perform better on the Reuters data? The Reuters data have been
called simple to classify (Bekkerman and Allan, 2003). In the category “ship” randomly
sampled from this data set, quite a few instances of the word “ship” are found among key
features extracted (Figure 5a).

The comparison between the Reuters and PubMed data in Figures 5a and 5b shows the
top Chi Square words of documents assigned to the Reuters category “ship” and PubMed
category “neurobiology.” The features that do not appear to be words are actually
abbreviations. FVN is a Netherlands insurance company in the Reuters data sets, and
NMDA in the PubMed data set is a glutamate receptor.

In the given samples, document 4 in the Reuters data set (Figure 5a) and documents 19,
24, 28, 30 in the PubMed data (Figure 5b) have been mis-assigned to their respective
categories. The reason? Guilt by association. The features in the mis-classified

 10

documents are associated with other documents that are correctly classified, but in these
particular cases, the association misleads into a classification assignment that is false.

Category: SHIP (From Reuters-21578)

Document 1:
vessel, ship, herald, ferry, rotterdam, transport, enterprise, cargo,
capsize, zeebrugge, channel, british, disaster, crew, owner,
navigate, harbour, water, accident, load, belgian, free

Document 2: vessel, dispute, transport, water, northwest, ice
Document 3: vessel, ship, port, halt, city, northwest
Document 4: ship, port, cargo, channel, handle

Document 5: vessel, ship, herald, ferry, enterprise, cargo, passenger, zeebrugge,
shipowner, townsend, disaster, court, crew, navigate, accident, free

Document 6:
vessel, ship, port, strike, transport, seamen, marine, janeiro,
harbour, halt, de, merchant, idle

Document 7: ship, port, cargo, handle

Document 8: port, strike, dispute, rotterdam, transport, cargo, fnv, redundancy,
de, louw

Document 9: port, dispute, rotterdam, transport, cargo, fnv, court, redundancy

Document 10:
herald, ferry, transport, enterprise, passenger, dead, townsend,
channel, british, disaster, rescue, owner, water, de, belgian,
hundred, free, ice

Figure 5a: Key words extracted per document and ranked via Chi Square from the

Reuters category “Ship”. Highlighted document 4 is a mis-classification.

Category: NEUROBIOLOGY (From PubMed)

Document 17:
neuron, depolarization, potential, amplitude, record, fire, action,
afferent, serotonin, impulse, ht, accompany, fiber, mechanical

Document 18: neuron, synapse, hippocampus, efficacy
Document 19: neuron, synapse, postsynaptic, efficacy, afferent, input

Document 20:
neuron, synapse, brain, potential, underlie, efficacy, blockade,
gene, mechanical

Document 21: synapse, brain, plastic, underlie, accompany, cerebellar, gene

Document 22:
neuron, synapse, hippocampus, amplitude, plastic, NMDA, spine,
accompany, mechanical

Document 23: axon, record, stimulate, cardiovascular, fire, impulse, baroreceptor,
discharge, nerve, blockade, reflex, artery

Document 24: neuron, fire, input

Document 25:
neuron, brain, evoke, depolarization, potential, record, plastic, nt,
tractus, action, afferent, respiratory, clamp, solitary, input, nerve,
fiber, central, mechanical

Document 26: synapse, brain, plastic, underlie, efficacy, mechanical

Document 27:
neuron, synapse, brain, evoke, amplitude, postsynaptic, inhibitory,
NMDA, latency, cerebellar, mechanical

Document 28: neuron, synapse, synapse, postsynaptic, record, afferent, input

Document 29:
synapse, evoke, depolarization, potential, synapse, postsynaptic,
record, stimulate, presynaptic, action, inhibitory, central,
mechanical, ca

Document 30: underlie, reflex, central, mechanical

 11

Document 31: neuron, synapse, synapse, plastic, clamp, input

Figure 5b: Highlighted documents are mis-classifications. In this data set as in the
Reuters examples in Figure 5a, at the key feature words in the mis-classified documents

appear in the correctly classified documents.

Our experiments here have shown that excellent classification results are possible with
title and abstract only. Would we have achieved better results had we used the full text of
the PubMed articles along with title and abstract? Further experiments are needed.

VII. Discussion

What makes a good classifier?

We used only a subset of the Reuters 21578 corpus. For the sample we used, the
“Copper” classifier works best, achieving 98% accuracy, while the worst is “Grain,”
achieving only 59% accuracy. For the PubMed data set, the best classifier is
“Experimental Psychology” at 71%, while the worst is “Microbiology” at 0% accuracy.

Our best classifiers did not necessarily become more accurate when built through a larger
training set. However, the classifiers that performed the worst had among the fewest
documents in the training set, as shown in Figure 6. The best classifiers include a good
distribution of words as determined by tf-idf weighting that are strong indicators of
category. Figure 6 shows that the Reuters data performed best with the linear kernel,
whereas the PubMed data performed best with the RBF kernel. We do not know why,
but it might have to do with the particular terms and their distribution in the document.

Reuters 21578

Binary SVM

Classifier

Documents
assigned

manually to
categories

Number of
documents

assigned
automatically
to the correct

categories:
linear kernel

Number of
documents

assigned
automatically
to the correct

categories:
RBF

Ship 46 35 41

Jobs 49 44 28

Sugar 66 60 66

Grain 28 19 24

Crude 105 94 98

Money 52 45 25

Trade 44 35 38

Coffee 44 42 40

Copper 42 42 42

Cotton 24 21 23

 12

PubMed

Binary SVM

Classifier

Documents
assigned

manually to
categories

Number of
documents

assigned
automatically to

the correct
categories: linear

kernel

Number of
documents

assigned
automatically to

the correct
categories: RBF

Bioinformatics 60 35 41

Genetics 26 5 18

Neurobiology 57 25 40

Biochemistry 28 9 24

Molecular Biology 29 9 25

Cellular Biology 23 1 17

Experimental Psychology 34 14 27

Artificial Intelligence 23 6 18

Microbiology

 8 0 7

Biophysics 20 5 16

Figure 6: Classifier categories and number of training documents per category, with
comparison of the linear and RBF kernel.

How could the procedure be modified to make fewer classification mistakes?

A possible way to improve classification for the PubMed data would be to bridge the gap
between terms found in the biomedical articles and the category terms of Mendeley. In
similar document classification experiments, Wang and Domeniconi (2008) and
Gabrilovich and Markovitch (2006) extracted concepts from Wikipedia, along with
synonymous and associated concepts, and used these to enrich the features extracted from
the document set. Even though the Gabrilovich and Markovitch results improved with
the ontology-enrichment, the improvement was only marginal (Wang and Domeniconi,
2008, p. 20, Table 10).

Another method to improve results in both data sets would be to weight words in article
titles more than words in the abstract, a method that appeared in Dumais et al. (1998).
Another direction of research might be to use phrases as well as words for classification.
It has also been noted that bi-grams (phrases) may be more predictive than single words
(Yang and Pedersen, 1997).

Our classification method permits recall to suffer for the sake of precision. That is, we
permit the cost of errors in recall to be less than the cost of errors in precision. In some
applications, such as in threat research, a false negative could lead to risky consequences

 13

if a critical problem goes undetected. For the goal of increasing recall, then, other
classification methods might be preferred (Seo and Sycara, 2008).

What options should we present to the user?

We require the user’s existing documents in labeled folders, say, in Mendeley
information management software, as preparation for automatic filing. The procedure
might begin with a “Test for Accuracy” button, which would start an algorithm to
compare results with different SVM kernels to see which would yield highest
classification accuracy. The system then would present the user with a message such as
“Expect 75% accuracy or greater when adding documents to the current folders,” with an
option for more information that would show the number of features, kernel selected, and
technical details.

The system requires a minimum accuracy for placing unseen documents in folders for it
to be a reliable desktop tool. What percent accuracy is required in document organization
should be tested through user study. For the sake of discussion, let’s say the system’s
accuracy tolerance is set to 70%. That would mean that when the system self-tests and
obtains an accuracy of 69% or less, and some user interaction to improve accuracy would
be requested. The system would either ask the user for more documents to re-test, or it
would ask the user to merge the contents of two folders. In re-testing a classification, the
system could either send each item in a category to each classifier and then compare F
scores of each classifier to find an alternative category for filing, or else switch to multi-
class SVM to determine an alternate category. A more involved approach would be to
retain inferior classifications and ask the user to select those items that do not fit with the
others, so that the system could learn it had made an error. This is the protocol suggested
for the Lighthouse system by Leuski and Allen (2000). This possibility requires some
effort on the part of the user and so we do not believe many users will find it attractive.

Rather than ask the user to make (negative) decisions about what may have been put in a
category wrongly, the system might ask the user to make (positive) classification
decisions and add documents to the category that did not self-classify accurately. A
message might be “Please add [number needed to make 10 total] documents to the [folder
achieving low accuracy]. Or perhaps, the system could adopt Google’s humility. “Well,
this is embarrassing. We do not have enough documents in the [folder achieving low
accuracy] to perform the classification. However, if you add more documents we would
do better.” So even a positive decision requires some effort, so we think many users will
find this option unattractive too.

Perhaps the best approach from a usability standpoint would be to ask the user his
opinion whether two categories could be merged. The message could be something like
“Consider merging the [folder achieving low accuracy in classification] with [second best
folder category]. For example, a message might be “Consider merging the Microbiology
folder with Bioinformatics.”

Should we limit the number of documents per category folder?

Our sample data sets include between 8 and 105 documents per category (Figure 7a and
7b). Perhaps 15 or 20 are minimally necessary per category to train the classifier. But do
users care to look over so many documents to find the one of interest? A user study
would be necessary to confirm what is preferred, but we believe that 70 documents is too

 14

large for a single folder, and 5 may be so small that it just wastes space. We propose for
the purposes of this present study that between perhaps 6 and 40 documents per folder is
manageable.

Folder size (or category size) thus becomes a factor in the personal information
environment. So we run a clustering algorithm over overly-large folders to organize the
documents into subgroups, or sub-folders.9 We use K-means clustering which has been
found to work well independent of the data domain.

As a default for subdividing large folders, we create 3 subgroups. After clustering, if
one of the three subgroups has more than 40 documents, we will re-classify the
documents and create 4 subgroups instead (changing the default from 3 to 4). But if after
the initial clustering, one of the 3 subgroups has 5 or fewer documents, we change the
default from 3 to 2 and re-run the clustering to make 2 subgroups.

It is necessary to label the newly-formed grouped so that users have an idea of what the
folder contains. We create category labels automatically by running Chi Square to assign
word scores to document words. We can then use these words to label the subgroups, or
subfolders. One label is probably insufficient, and anyway might be ambiguous, so we
assign 3 to 5 labels. In the event that the same word appears in more than one subgroup,
we can use these scores also to select the highest-scoring word and remove duplicates so
that the same word is not used as a label for more than one subfolder.

Reuters 21578

Becomes subcategories
Classification

category

Documents
assigned

manually to
categories

Number of
documents

in subgroup
Keywords for subgroup

18 Free, Ferry, Enterprise, Herald,
Channel

17 Strike, Union, Port, Dispute, Marine Ship 46

11
Line, Northwest, Snow, Sea,
Rotterdam

16 Record, Worst, Compile, Number,
Unadjusted

20
Workforce, Office, Unemployed,
Job, Manufacture

Jobs 49

14
Labor, Insure, Program, Prior,
Regular

36 Beet, Yield, Hungary, Hectare, Sow

9
Intervene, Rebate, Commis, License,
Maximum Sugar 66

21 West, Germany, European, France,
French

11 Distil, Refinery, Gasoline, PDVSA,
Price

Crude 105

30
Crude, Explore, Drill, Recommend,
Study

9 We use sub-folders and subgroups interchangeably.

 15

14
Earthquake, Ecuador, Jungle, Balao,
Repair

26 Saudi, Arabia, Ceil, Defend, Lift
18 Bbl, Post, Raise, WTI, Intermediate
17 Fed, Business, March, Money, Loan

23
Supply, Growth, Define, Asset,
Exclude Money 52

12 Dlr, Lend, Week, Bundesbank,
Sterling

11 Japanese, Surplus, Japan, Electron,
Baker

19
Bill, Subcommittee, Toughen,
Unfair, Democrat

Trade 44

14 Billion, Deficit, Import, Retaliate,
Legislate

16 Gaviria, Cesar, Factor, Gilberto,
Arango

14
Colombia, Delegable, Intern,
Consume, Talk

Coffee 44

14 Delegable, Council, Group, Meet,
April

18 Lower, Effect, Cathod, Immediate,
Lb

7 Fire, Noranda, Kill, Trap, Full Copper 42

17
Chile, Confirm, Zambia, Chilean,
Cent

Figure 7a The table shows the number of Reuters documents manually assigned to the
Reuters categories, and for each sub-grouping, 5 keywords found via the Chi Square
statistic which we use for folder labels.

Pubmed

Becomes subcategories

Classifier

Documents
assigned

manually to
categories

Number
of

documents
in

subgroup

Keywords for subgroup

17 Genome, Biology, Analyze, Chain,
Indelible

25
Gene, Regulatory, Genetic, Biologist,
Web

Bioinformatics 60

18 Thermophile, Temperature, Residual,
Acid, Amino

21 Record, Response, Afferent, Nerve,
Nucleus

18 Dendrite, Spine, IPSC, Acute, Axon Genetics 57

17
Memory, Neural, Depend, Learn,
Gene

 16

Figure 7b The table shows the number of PubMed documents manually assigned to the
Mendeley categories, and for each sub-grouping, 5 keywords found via the Chi Square
statistic which we use to label the newly-formed subfolders.

VIII. Summary

Our contribution rests in the proposed adaption of standard classification and labeling
procedures to personal information management. We use as training data the articles the
user has already filed and the (presumably) subject label he has already assigned to each
category folder for the machine learning task. We ran experiments on two data sets to
see whether our accuracy was domain dependent, and found that our procedures worked
well on both more general data and also domain-specific, technical medical data,
although procedures worked better in the more general domain.

The general data was the Reuters text categorization set 21578 and the domain-specific
data was a set of article titles with abstracts from PubMed. Both had manual
classifications that we used to measure automatic classifications. The Chi Square feature
selection method to isolate keywords to classify, followed by the Support Vector
Machine algorithm to classify, yielded 96% accuracy on the “easy” Reuters data and 89%
accuracy on the more technical PubMed data. The PubMed abstracts were part of our
use-case scenario, demonstrating a research article collection stored in the personal
information management software Mendeley. We proposed a procedure to test
classifications without inconveniencing the user, and some choices to present to the user
to improve classification accuracy for unseen documents.

Acknowledgment

We are grateful for several Skype discussions with Mendeley director, Dr. Jason Hoyt,
who suggested the research problem and provided the PubMed data with Mendeley
category classifications that we used for experiments.

References

Barreau, D. and Nardi, B. A. (1995). Finding and reminding: file organization from the
desktop. ACM SIGCHI Bulletin 27(3), 39-43.

Bekkerman, R. and Allan, J. (2003) Using Bigrams in Text Categorization. CIIR
Technical Report IR-408, 1-10.

Bekkerman, R., El-Yaniv, R., Tishby, N. Winter (2003). Distributional Word Clusters vs.
Words for Text Categorization Journal of Machine Learning Research 3, 1183-1208.

Bekkerman, R., Raghavan, H., Allan, J. Eguchi, K. (2007). Interactive clustering of text
collections according to a user-specified criterion. Proceedings of the 20th International
Joint Conference on Artificial Intelligence. Hyderabad, India, San Francisco, CA: The
International Joint Conferences on Artificial Intelligence, Inc., 684-689.

Cai, D., He, X, and Han, J. (2006). Tensor space model for document analysis.
SIGIR ’06, August 6-11, Seattle, Washington, USA, 625-626.

 17

Colas, F. and Brazdil, P. (2006) Comparison of SVM and some other classification
algorithms in text classification tasks. In Artificial Intelligence in Theory and Practice
(pp. 169-178). Boston: Springer.

Dumais, S., Platt, J., Heckerman, D. and Sahami, M. (1998). Inductive Learning
Algorithms and Representations for Text Categorization. In Proceedings of the 17th
International Conference on Information and Knowledge Management, 148-155.

Fan X., Liu Q.H., Ng P. (1999). An automated document filing system. Journal of
Systems Integration, 9, 223-262.

Forman, G. (2003). An extensive empirical study of feature selection metrics for text
classification. Journal of Machine Learning Research 3, 1289-1305.

Gabrilovich, E. and Markovitch, S. (2006). Overcoming the brittleness bottleneck using
Wikipedia: enhancing text categorization with encyclopedia knowledge. Proceedings of
the 21st National Conference on Artificial Intelligence- Volume 2 Boston, Massachusetts,
1301-1306.

Grira, N., Crucianu, M, Boujemaa (2005). Unsupervised and semi-supervised clustering:
a brief survey. In A Review of Machine Learning Techniques for Processing Multimedia
Content, Report of the MUSCLE European Network of Excellence (6th Framework
Programme), 1-12.

Guinepain, S. and Le Gruenwald (2005). Research issues in automatic database
clustering. SIMOD Record, 34 (1), 33-38.

Henderson, S. (2005). Genre, Task, Topic and Time: Facets of Personal Digital
Document Management. CHINZ ’05, July 6-8, Auckland, NZ, 75-82

Hsu C. W., Chang C.C., Lin C.J. (2010). A practical guide to support vector
classification. Technical Report, Department of Computer Science & Information
Engineering, National Taiwan University, Taiwan.
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

Huang, Y. and Mitchell, T. M. (2006). Text clustering with extended user feedback.
SIGIR ’06, August 6-11, 2006, Seattle, Washington, USA, 413-420.

ICT 2010. “Me and my files” ICT 2010. Retrieved May 2, 2010 from
http://cordis.europa.eu/ictresults/index.cfm?section=news&tpl=article&BrowsingType=F
eatures&ID=91255

Leuski, A. and Allan, J. (2000). Lighthouse: showing the way to relevant information. In
Proceedings of IEEE Symposium on Information Visualization (InfoVis'00), Salt Lake
City, Utah, USA, October 9-10, 2000. IEEE Computer Society, 125-130.

Liu H. and Setiono R. (1995) Chi2: Feature selection and discretization of numeric
attributes. Proceedings of the IEEE 7th International Conference on Tools with Artificial
Intelligence, 5-8 Nov 1995, Herndon, Virginia, USA, 388-391

Magbool Q. and Babri H.A. (2006). Automated software clustering: An insight using
cluster labels. The journal of Systems and Software 79, 1632-1648.

 18

Morais, E. A.M. and Ambrósio, A.P.L. (2008). Automatic domain classification of
jurisprudence documents. Proceedings of the 2008 Euro American Conference on
Telematics and Information Systems (EATIS) ‘08, September 10-12, Aracaju, Brazil [6
pages].

Olson, D. L. and Delen, D. (2008). Support Vector Machines. Advanced Data Mining
Techniques Berlin: Springer.

Rogati, M. and Yang, Y. (2002). High performing feature selection for text classification.
CIKM ’02, November 4-9, 2002, McLean, Virginia, 659-661.

Salton, G., Wong, A. and Yang, C.S. (1975). A vector space model for information
retrieval. Communications of the ACM, 18 (11): 613–620.

Seo, Y-W and Sycara, K. (2008). Addressing insider threat through cost-sensitive
document classification. In H. Chen, E. Reid, J. Sinai, A. Silke and B. Ganor (Eds.)
Terrorism Informatics: Knowledge Management and Data Mining for Homeland Security.
(pp. 451-472). New York: Springer.

Syed, Z.S., Finin, T. and Joshi, A. (2008). Wikipedia as an ontology for describing
documents. International Conference on Weblogs and Social Media, March 30-April 2,
2008, Seattle Washington, U.S.A., 136-144.

Tseng, Y.H. (2010). Genetic title labeling for clustered documents. Expert Systems with
Applications, 37, 2247-2254.

Vapnik, V. (1995)[1998]. The nature of statistical learning theory. Second edition
Springer.

Wang, P. and Domeniconi, C. (2008) Building semantic kernels for text classification
using Wikipedia. KDD, August 24-27, 2008, Las Vegas, Nevada, 713-721.

Williams, N., Zander, S., Armitage, G. (2006) A preliminary performance comparison of
five machine learning algorithms for practical IP traffic flow classification, ACM
SIGCOMM Computer Communication Review 36 (5), 5-16.

Xue, H. Yang, Q. and Chen, S. (2009). SVM: Support Vector Machines. In X. Wu and
V. Kumar (Eds). The top ten algorithms in data mining (pp. 37-59). Boca Raton: CRC
Press.

Yang, Y. and Pedersen, J. O (1997). A Comparative Study on Feature Selection in Text
Categorization. Ed. D. H. Fischer, Proceedings of the Fourteenth International
Conference on Machine Learning (ICML 1997), Nashville, Tennessee, July 8-12, 412-
420.

Yilmazel, O, Symonenko, S. Balasubramanian, N. and Liddy, E. (2008). Leveraging
one-class SVM and semantic analysis to detect anomalous content. In H. Chen, E. Reid, J.
Sinai, A. Silke and B. Ganor (Eds.) Terrorism Informatics: Knowledge Management and
Data Mining for Homeland Security. (pp. 409-424). New York: Springer.

 19

Zhang, M. and Zhang, D. (2008). Trained SVMs <sic> based rules extraction method for
text classification. IEEE International Symposium on IT in Medicine and Education, 12-
14 Dec. 2008, Xiamen, China, 16-19.

Zhang, D. Chen, X. and Lee, W. S. (2005) Text classification with kernels on the
multinomial manifold. SIGIR ’05, August 15-19, Salvador, Brazil, 266-273.

